- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0012000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ghoshal, Suprovat (3)
-
Lee, Euiwoong (2)
-
Chang, Tony (1)
-
Cohen-Addad, Vincent (1)
-
Fan, Chenglin (1)
-
Makarychev, Konstantin (1)
-
Makarychev, Yury (1)
-
Newman, Alantha (1)
-
de Mesmay, Arnaud (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We initiate the study of algorithms for constraint satisfaction problems with ML oracle advice. We introduce two models of advice and then design approximation algorithms for Max Cut, Max 2-Lin, and Max 3-Lin in these models. In particular, we show the following. • For Max-Cut and Max 2-Lin, we design an algorithm that yields near-optimal solutions when the average degree is larger than a threshold degree, which only depends on the amount of advice and is independent of the instance size. We also give an algorithm for nearly satisfiable Max 3-Lin instances with quantitatively similar guarantees. • Further, we provide impossibility results for algorithms in these models. In particular, under standard complexity assumptions, we show that Max 3-Lin is still 1/2+η hard to approximate given access to advice, when there are no assumptions on the instance degree distribution. Additionally, we also show that Max 4-Lin is 1/2 + η hard to approximate even when the average degree of the instance is linear in the number of variables.more » « less
-
Ghoshal, Suprovat; Lee, Euiwoong (, 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS))
-
Cohen-Addad, Vincent; Fan, Chenglin; Ghoshal, Suprovat; Lee, Euiwoong; de Mesmay, Arnaud; Newman, Alantha; Chang, Tony (, 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA))
An official website of the United States government
